1,231 research outputs found

    Invariant Categorisation of Polygonal Objects using Multi-resolution Signatures

    Get PDF
    With the increasing use of 3D objects and models, mining of 3D databases is becoming an important issue. However, 3D object recognition is very time consuming because of variations due to position, rotation, size and mesh resolution. A fast categorisation can be used to discard non-similar objects, such that only few objects need to be compared in full detail. We present a simple method for characterising 3D objects with the goal of performing a fast similarity search in a set of polygonal mesh models. The method constructs, for each object, two sets of multi-scale signatures: (a) the progression of deformation due to iterative mesh smoothing and, similarly, (b) the influence of mesh dilation and erosion using a sphere with increasing radius. The signatures are invariant to 3D translation, rotation and scaling, also to mesh resolution because of proper normalisation. The method was validated on a set of 31 complex objects, each object being represented with three mesh resolutions. The results were measured in terms of Euclidian distance for ranking all objects, with an overall average ranking rate of 1.29

    Correspondence of three-dimensional objects

    Get PDF
    First many thanks go to Prof. Hans du Buf, for his supervision based on his experience, for providing a stimulating and cheerful research environment in his laboratory, for letting me participate in the projects that produced results for papers, thus made me more aware of the state of the art in Computer Vision, especially in the area of 3D recognition. Also for his encouraging support and his way to always nd time for discussions, and last but not the least for the cooking recipes... Many thanks go also to my laboratory fellows, to Jo~ao Rodrigues, who invited me to participate in FCT and QREN projects, Jaime Carvalho Martins and Miguel Farrajota, for discussing scienti c and technical problems, but also almost all problems in the world. To all persons, that worked in, or visited the Vision Laboratory, especially those with whom I have worked with, almost on a daily basis. A special thanks to the Instituto Superior de Engenharia at UAlg and my colleagues at the Department of Electrical Engineering, for allowing me to suspend lectures in order to be present at conferences. To my family, my wife and my kids

    Revisiting the countercyclicality of fiscal policy

    Get PDF
    This paper provides a novel dataset of time-varying measures on the degree of countercyclicality of fiscal policies for advanced and developing economies between 1980 and 2021. The use of time-varying measures of fiscal stabilization, with special attention to potential endogenity issues, overcomes the major limitation of previous studies and alllows the analysis to account for both country-specific as well as global factors. The paper also examines the key determinants of countercyclicality of fiscal policy with a focus on factors as severe crises, informality, financial development, and governance. Empirical results show that (i) fiscal policy tends to be more counter-cyclical during severe crises than typical recessions, especially for advanced economies; (ii) fiscal counter-cyclicality has increased over time for many economies over the last two decades; (iii) discretionary and automatic countercyclicality are both strong in advanced economies but acyclical (at times procyclical) in low-income countries, (iv) fiscal countercyclicality operates primarily through the expenditure channel, particularly for social benefits, (vi) better financial development, larger government size and stronger institutional quality are associated with larger countercyclical effects of fiscal policy. Our results are robust to various specifications and endogeneity checks.info:eu-repo/semantics/publishedVersio

    Looking through the eyes of the painter: from visual perception to non-photorealistic rendering

    Get PDF
    In this paper we present a brief overview of the processing in the primary visual cortex, the multi-scale line/edge and keypoint representations, and a model of brightness perception. This model, which is being extended from 1D to 2D, is based on a symbolic line and edge interpretation: lines are represented by scaled Gaussians and edges by scaled, Gaussian-windowed error functions. We show that this model, in combination with standard techniques from graphics, provides a very fertile basis for non-photorealistic image rendering

    Artistic rendering of the visual cortex

    Get PDF
    In this paper we explain the processing in the first layers of the visual cortex by simple, complex and endstopped cells, plus grouping cells for line, edge, keypoint and saliency detection. Three visualisations are presented: (a) an integrated scheme that shows activities of simple, complex and end-stopped cells, (b) artistic combinations of selected activity maps that give an impression of global image structure and/or local detail, and (c) NPR on the basis of a 2D brightness model. The cortical image representations offer many possibilities for non-photorealistic rendering

    Cortical 3D Face Recognition Framework

    Get PDF
    Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. In cortical area V1 exist double-opponent colour blobs, also simple, complex and end-stopped cells which provide input for a multiscale line/edge representation, keypoints for dynamic routing and saliency maps for Focus-of-Attention. All these combined allow us to segregate faces. Events of different facial views are stored in memory and combined in order to identify the view and recognise the face including facial expression. In this paper we show that with five 2D views and their cortical representations it is possible to determine the left-right and frontal-lateral-profile views and to achieve view-invariant recognition of 3D faces

    GyGSLA: A portable glove system for learning sign language alphabet

    Get PDF
    The communication between people with normal hearing with those having hearing or speech impairment is difficult. Learning a new alphabet is not always easy, especially when it is a sign language alphabet, which requires both hand skills and practice. This paper presents the GyGSLA system, standing as a completely portable setup created to help inexperienced people in the process of learning a new sign language alphabet. To achieve it, a computer/mobile game-interface and an hardware device, a wearable glove, were developed. When interacting with the computer or mobile device, using the wearable glove, the user is asked to represent alphabet letters and digits, by replicating the hand and fingers positions shown in a screen. The glove then sends the hand and fingers positions to the computer/mobile device using a wireless interface, which interprets the letter or digit that is being done by the user, and gives it a corresponding score. The system was tested with three completely inexperience sign language subjects, achieving a 76% average recognition ratio for the Portuguese sign language alphabet.info:eu-repo/semantics/publishedVersio

    Efficient assembly and secretion of recombinant subviral particles of the four dengue serotypes using native prM and E proteins.

    Get PDF
    © 2009 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Flavivirus infected cells produce infectious virions and subviral particles, both of which are formed by the assembly of prM and E envelope proteins and are believed to undergo the same maturation process. Dengue recombinant subviral particles have been produced in cell cultures with either modified or chimeric proteins but not using the native forms of prM and E. Methodology/Principal Findings: We have used a codon optimization strategy to obtain an efficient expression of native viral proteins and production of recombinant subviral particles (RSPs) for all four dengue virus (DV) serotypes. A stable HeLa cell line expressing DV1 prME was established (HeLa-prME) and RSPs were analyzed by immunofluorescence and transmission electron microscopy. We found that E protein is mainly present in the endoplasmic reticulum (ER) where assembly of RSPs could be observed. Biochemical characterization of DV1 RSPs secretion revealed both prM protein cleavage and homodimerization of E proteins before their release into the supernatant, indicating that RSPs undergo a similar maturation process as dengue virus. Pulse chase experiment showed that 8 hours are required for the secretion of DV1 RSPs. We have used HeLa-prME to develop a semi-quantitative assay and screened a human siRNA library targeting genes involved in membrane trafficking. Knockdown of 23 genes resulted in a significant reduction in DV RSP secretion, whereas for 22 others we observed an increase of RSP levels in cell supernatant. Conclusions/Significance: Our data describe the efficient production of RSPs containing native prM and E envelope proteins for all dengue serotypes. Dengue RSPs and corresponding producing cell lines are safe and novel tools that can be used in the study of viral egress as well as in the development of vaccine and drugs against dengue virus.This work was supported by the 6th European Framework programme DENFRAME and by the Research Fund for the Control of Infectious Diseases of Hong Kong (RFCID#08070952)
    • …
    corecore